大学物理 ›› 2020, Vol. 39 ›› Issue (01): 1-4.doi: 10.16854 / j.cnki.1000-0712.190294

• 教学研究 •    下一篇

非对易相空间中的狄拉克振子的能级和Wigner 函数

吕腾博, 刘 丽, 刘卫华, 李 昕, 王小力,    

  1. 1. 陕西省量子信息与光电量子器件重点实验室,西安交通大学理学院,陕西西安 710049;2. 沈阳大学师范学院,辽宁沈阳 110044;3. 西安交通大学电信学部微电子学院,陕西西安 710049
  • 收稿日期:2019-06-26 修回日期:2019-07-01 出版日期:2020-01-20 发布日期:2020-02-29
  • 通讯作者: 王小力,E-mail:xlwang@ mail.xjtu.edu.cn
  • 作者简介:吕腾博(1996—),男,山东泰安人,西安交通大学研究生,硕士,研究方向:量子信息与量子计算.
  • 基金资助:
    国家自然科学基金(61671368)和西安交通大学“名师、名课、名教材”建设工程项目资助

Energy and Wigner functions of the Dirac oscillator in noncommutative phase space

LV Tengbo, LIU Li, LIU Weihua, LI Xin, WANG Xiaoli,    

  1. 1.Shaanxi Key Laboratory for Quantum Information and Quantum Optoelectronic Devices,School of Science,Xi’an Jiaotong University,Xi’an,Shaanxi 710049,China;2. Normal College,Shenyang University,Shenyang,Liaoning 110044,China;3. School of Microelectronics,Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an,Shaanxi 710049,China
  • Received:2019-06-26 Revised:2019-07-01 Online:2020-01-20 Published:2020-02-29

摘要: 非对易几何、弦论和圈量子引力理论的发展,使非对易空间受到越来越多的关注. 非对易量子理论不同于平常的量子理论,它是弦尺度下的特殊的物理效应,处理非对易量子力学问题需要特殊方法. 本文首先介绍了Moyal 方程与Wigner 函数,利用Moyal-Weyl 乘法与Bopp 变换将H(x,p)变换成H ^ (x^ ,p^ ),考虑坐标—坐标、动量—动量的非对易性,实现对非对易相空间中星乘本征方程的求解. 并利用非对易相空间量子力学的代数关系,讨论了非对易相空间中狄拉克振子的Wigner 函数和能级,研究结果发现非对易相空间中狄拉克振子的能级明显依赖于非对易参数.

关键词: 狄拉克振子, 非对易相空间, Wigner 函数, 能级

Abstract: With the development of noncommutative geometry,string theory and loop quantum gravity theory,he noncommutative space has been made more and more concerned. The noncommutative quantum theory is different from the ordinary quantum theory,which is a special physical effect under the string scale. Therefore,special methods are needed to deal with noncommutative quantum mechanics problems. In this paper,the Moyal equationand Wigner function first are introduced. Starting from Moyal-Weyl multiplication and Bopp transformation,H(x,p)is transformed into H^ (x^ ,p^ )by considering the noncommutability of coordinate-coordinate,momentum-momen tum to realize the star-multiplication eigenequation in the non-commutative phase space. The algebraic relationship of noncommutative phase space quantum mechanics is used to discuss the Wigner functions and energy levels of Dirac oscillator in noncommutative phase space. The results show that the energy level of the Dirac oscillator in the non-commutative phase space is obviously dependent on non-commutative parameters.

Key words: Dirac oscillator, noncommutative phase space, wigner function, energy